
AIN System Development—A Customer-Centered Approach 
 

James T. Smith 
iamjts2@yahoo.com  

 

Abstract: A high-level view of an information model and system architecture for the AIN—the Advanced 
Intelligent Network—is presented which places the customer as the focus of all service design, 
development, deployment, and management.  In this paper, the service context profile—one of the major 
components of this architecture—is used to indicate how several technologies from the general field of 
distributed artificial intelligence (DAI) may be applied with far-reaching consequences. 

1. The Proposed Model -- a First Pass 
In this section a top-level logical view is presented of the proposed design and information model, prior to 
focusing upon the service context profile.  A natural first decomposition of the information required by the 
proposed AIN architecture is based upon the differentiation of that information which is customer-specific, 
that which is system-specific, and that which is the expression of various relationships between 
information from the other two.  The major components are: 

• Service Subscription 
• Customer Context 
• Service Context 

• Service Description 
• Service Management 
• Service Control Loop 

The left column represents general categories of customer-specific information and processing.  The right 
column represents categories of AIN system-specific information and processing. 

1.1. Top-level Service Management 

A pair of coordinated, complementary top-level system managers—a service administration manager and 
a real-time feature manager—is assigned to the customer, as a result of the subscription process.  This 
assignment is reviewed each time the customer's subscription is modified. 

The administration manager (AM) controls the customer's modification of information within the 
customer context and service context profiles.  In particular, the AM is to facilitate the customer's 
administration of his services and features so that he receives maximum benefit—a subjective call—from 
the positive interactions of his service features, and yet to prevent a configuration that would result in 
negative, or conflicting behavior. 

The feature manager (FM) controls the real-time execution of the customer's various services and their 
interactions with each other and with the system, as specified by the customer subscription, customer 
context, and service context profiles. Based upon the customer and service context profiles, and upon 
AIN system state information, the FM is responsible to 

• Analyze the current contextual state of the customer's services at any given moment, 
• Select appropriate service actions, and  
• Manage their execution. 

The AM and FM are coordinated in the sense that the FM must be able to manage the real-time 
execution of whatever service behavior the AM has specified; while, the AM must be able to detect and 
prevent the customer’s specification of situations which the FM would be unable to manage.  The two 
managers thus work in a coordinated manner to provide the customer with a richer set of service 
capabilities. 

In each instance of service execution, the information in the customer context and service context profiles 
(described below) is processed to determine what is the most appropriate action to be taken by the 
system.  The two managers are complementary in the sense that the FM's real-time processing not only 
is moderated but also is optimized by appropriate pre-processing by the AM. 

 James T. Smith Page 1 TINA’95 

mailto:iamjts2@yahoo.com


AIN System Development -- A Customer-Centered Approach 

An important adjunct functionality of these two managers is feature interaction negotiation management.  
This is the process by which the AIN system, in conjunction with the AM and FM, determines acceptable 
alternative service behavior, whenever the service context of other involved parties, or the capabilities of 
other AIN systems are not consistent with the preferred service behavior of the customer whose services 
are being managed. 

1.2. Service Description Profile 

The service description profile provides a comprehensive top-level declarative view of the AIN system.  
The information in this profile is comprehensive in that it contains descriptions of all service features and 
capabilities offered via the AIN system.  The information in this profile is declarative in that the information 
provided here makes no assumptions regarding the procedural implementations of those services. 

1.3. Service Management Profile 

The service management profile associates the features and capabilities described declaratively in the 
service description profile with specific implementations within the AIN system, the specific platforms—
e.g., a specific IP, intelligent peripheral—where they reside in the network, the specific resources they 
require—e.g., access to a customer's voice-prints—etc. 

The service description and service management profiles together represent the abstraction of the 
specification of a service's behavior from the implementation of that behavior. The former contains the 
knowledge needed by the intelligent AIN system to support both the non-real time service management 
and the real time service execution functions provided by the latter. 

1.4. Service Control Loop 

The service control loop provides the real-time framework for the management of the customer's 
services.  At the top-level of each customer’s services execution, the FM of the customer manages the 
execution of the customer's services, being driven by information in the customer's service context profile 
(which in turn is dependent upon the service description profile, the service subscription profile, and the 
customer context profile), real-time state information, and the system's service description and 
management profiles. 

Similar to the blackboard paradigm of DAI (distributed artificial intelligence), the FM evaluates the 
customer's service context profile, along with system state information, to resolve (determine) the 
currently focused context.  From this context, the FM selects the next action to be taken, i.e., which 
service action is to be executed.  From the service description and management profiles, the FM 
identifies which implementation of that service is to be invoked.  The FM repeats this resolve-context, 
select action, execute cycle until a completion condition is identified and successfully executed. 

1.5. Service Subscription Profile 

The information stored in the service subscription profile specifies the combination of AIN services and 
features, including management features, billing options, etc. which comprise the top-level of controls and 
constraints for how that customer wishes his services to be managed and delivered.  The customer may 
identify not only preferred services and features but also any alternate feature behaviors regarding the 
services which are subscribed.  This information is used in support of feature interaction negotiation as 
needed during the system's delivery of his services. 

1.6. Customer Context Profile 

The customer context profile contains customer-provided service-neutral contextual information that is 
needed to drive (specify) the execution of the customer's services.  Its management is under control of 
the customer’s AM.  The intent of this profile is to provide a consistent, customer-centered mechanism for 
the customer to describe the various contextual elements which he can use to indicate the circumstances 
under which each subscribed service and feature is to be invoked.  It includes personal-contact 
information such as the identities of individuals and of groups of people—e.g., "My Doctor" and "Sales 

 James T. Smith Page 2 TINA’95 



AIN System Development -- A Customer-Centered Approach 

Accounts," temporal information such as periods of time—e.g., "Business Hours" and "Special 
Operations," and customer-state information—e.g., “Do Not Disturb” and “VIP’s Only.” 

The information stored in the customer context profile is service-neutral, that is, each item of information 
in it may be applied in the specification or qualification of the behavior—e.g., feature options—of any 
combination of the customer's services.  While shared by all services, this information is uniquely 
managed within this one profile.  Any modifications made to this profile immediately affect all service 
context specifications that are based, directly or indirectly, upon the modified information. 

1.7. Service Context Profile 

The service context profile specifies the contexts under which each subscribed service feature and 
management feature is applicable to the delivery of the customer's services.  Its management is under 
control of the customer’s AM.  The customer uses information from the customer context and the service 
description profiles in the generation and the administration of service contexts. 

Information from the customer context profile is used to provide the "whenever's," the "with whom's," the 
security PIN's, customer states, etc. which are needed to specify a service context.  Information from the 
service description profile is used to identify the logical system states—e.g., “Line-busy” or “Transfer-in-
progress”—for which a particular service behavior may be specified. 

While such logical system state descriptions may correspond—even one-to-one—to system specific 
information, such as that provided via specific AIN call-model triggers, their meaning and use in these 
contexts are not dependent upon the system's mechanisms for determining this state information. 

Although AIN call-models, etc. may evolve, service implementations may be modified, and such 
mappings may change; still, the semantics of specification of service context and behavior by the 
customer are to remain consistent to the customer. 

2. An Example of a Customer’s Service Context Profile Is Examined 
An example of a customer's logical view of his service context profile—in spreadsheet format, for purpose 
of this discussion—is shown in Table 1.  Although many details have been simplified or omitted, this 
example can be used to illustrate not only various aspects of the service context profile, but more 
importantly to indicate several far-reaching ramifications of this total AIN system architecture. 

The first four columns indicate service-neutral contextual information.  The contents of the first three 
columns are user-defined in the customer context profile; that of the fourth column is system-defined in 
the service description profile.  The last three columns indicate the service feature behavior desired by 
the customer for the contexts indicated by the first four columns. 

The entries under the System State, Feature, and Option columns are system-defined within the system's 
service description profile which defines all services, all system states, and in particular identifies those 
states meaningful for each given service and feature.  Such terms as "WorkHrs," "Boss," "Spouse," and 
"Sect" are customer-defined in the customer context profile.  Such terms as “FCF,” “CND,” "TimeOut," 
and "Alert" are system-defined in the service description profile. 

The appearance of an asterisk "*" in this example indicates an "Otherwise," or default value; while, the 
question mark "?" indicates a condition in which the system has not determined a value for this item.  The 
last entry is an example of a context that implicitly supports feature interaction negotiation: 

 * ? * * FCF Request ID-Msg 
This entry indicates the service action to be taken in the event that the calling-party is not known.  This 
service context entry indicates an alternative service behavior of the customer in the event that CND is 
blocked by the party calling the customer!  This entry is an example of the customer’s service context 
profile used to specify feature negotiation fall-back positions on an individual, case-by-case basis. 

 James T. Smith Page 3 TINA’95 



AIN System Development -- A Customer-Centered Approach 

 
 Time Who Cust.State Sys.State Feature Option Value 
 WorkHrs Spouse * TimeOut FCF Fwd2 VM-Wife 
 WorkHrs Boss * TimeOut FCF Fwd2 Sect. 
 WorkHrs Boss * Busy FCW Alert Quiet 
 WorkHrs Boss DoNotDisturb * FCW Alert Quiet 
 WorkHrs Sect * Busy FCW Alert Loud 
 Late * OnCall TimeOut FCW Alert Loud 
 Late * OnCall Busy FCW Alert Loud 
 Late * DoNotDisturb * FCF Fwd2 VM-Std 
 WorkHrs * * TimeOut FCF Fwd2 VM-Std 
 * * Meeting * FCF Fwd2 Pager 
 * Special Meeting * FCF Fwd2 UptNum 
 Lunch * * * FCF Fwd2 VM-Std 
 Late Wife * TimeOut FCF Ask PageMe 
 * * * * CND Alert * 
 * ? * * FCF Request ID-Msg 

Table 1   An Example Customer Service Profile 

3. Some Far-Reaching Consequences of this Design 

This AIN information model and system architecture facilitates the partitioning of information 
management and feature processing both vertically into islands of independently implementable 
functionality that are highly reusable and interchangeable, as well as horizontally into layers of increasing 
abstraction that provide tremendous flexibility in how the customer’s services are managed and 
delivered. 

The example of Section 2 is used to indicate several important aspects or consequences of this AIN 
architecture. which are summarized here, and will be discussed in the sections that follow. 

• Customer-Centered Service Management — The customer is provided through the use of labels 
(symbols) that are meaningful to him with the ability to interact with the AIN at a declarative level 
that does not require procedural knowledge of how a feature is or could be implemented.  The 
internal workings of the AIN are completely encapsulated from the customer. 

• User Interface Synergism — Multiple user interfaces (UI’s) are supported—e.g., textual, vocal, 
DTMF/IVR, and graphical—for the management and execution of the customer’s services. They 
all share a consistent “look-n-feel.” In particular, changes to the behavior of one UI result in 
corresponding changes to the behaviors of the others.  Advanced multi-lingual pseudo-natural 
language interfaces, including scripting capabilities, also are supported by this architecture. 

• User Information Synergism — All customer-provided information is enterable once (per change) 
and in one unique place, in a consistent manner that is independent of which, of how many, or of 
what types of services are, or will be subscribed which might use or be affected by that 
information. 

• Normalization of Information & Processing — Information management and feature processing 
are partitioned vertically into islands of independently implementable functionality.  The various 
types of service-generic information—day-timer, phonebook, customer states, customer contexts, 
etc.—which the customer may specify are implemented so as to be administered and processed 
independently of each other in a plug-n-play manner. 

• Symbolic Declarative Information — Information management and feature processing are 
partitioned horizontally into layers of increasing abstraction and generalization.  The customer is 
provided with the ability to state his problems—desired service behaviors, and their solutions—in 
customer-understandable terms—in as abstract and as general a manner as possible. 

 James T. Smith Page 4 TINA’95 



AIN System Development -- A Customer-Centered Approach 

• Flexible Processing Strategy — The symbolic declarative representation of the customer’s 
service management information is neutral to the particular realization of any specific service 
feature.  This provides the basis for a virtually unlimited flexibility as to what services such 
information may be applied, and as to how and when that information may be utilized. 

• Information Abstraction & Late-Binding Interpretation — The declarative symbolic information of 
one layer represents an abstraction (model) of the processing (procedures) of lower functional 
layers.  Under different real-time circumstances, the same information abstractions may be 
mapped to different realizations, and may be applied in different ways to satisfy quite different 
requirements.  Information abstraction leads to information reuse. 

• Feature Interaction & Negotiation Management — The customer’s profiles are treated by this AIN 
architecture as representing the customer’s preferred service feature behavior, rather than as the 
expression of a set of rigid specifications.  The goal of the FM is to select the service contexts 
which better satisfy the customers preferences and also are compatible with real-time system 
states and capabilities.  In particular, the FM’s of interacting customers utilize these symbolically 
expressed preferences as the basis for negotiation of service behavior that is acceptable to those 
parties. 

Each of these major points are now elaborated in greater detail.  These points are cumulative, that is, the 
functionality’s pertaining to the latter points build upon those of the earlier points.  Effort is made to 
preserve this continuity without being redundant.  Additional discussion of these points appears in other 
papers of the author, per the references. 

3.1 Customer-Centered Service Management 

The customer is provided through the use of labels (symbols) that are meaningful to him with the 
ability to interact with the AIN at a declarative level that does not require procedural knowledge of 
how a feature is or could be implemented.  The internal workings of the AIN are completely 
encapsulated from the customer. 

In most current AIN systems, information provided by the customer for the management of his telephone 
services must be entered and administered in a form that is natural to the service—i.e., the service 
designer, rather than natural to the customer.  For example, speed calling lists, call screening lists, etc. 
typically are administered as independent lists of phone numbers only.  Their association with the 
reasons why they appear in each of these lists—e.g., home, parents, doctor, work—is not supported by 
current information models.  Similarly, intervals and periods of time used to constrain service behaviors 
are divorced from their meaning to the customer. 

In contrast, the customer here is able to associate—and thereafter to use—customer-meaningful labels—
e.g., "Family," "Dr. Jones," "Business Hours"—with any information that she might provide as depicted in 
Table 1.  Since such labels are not required by internal service execution logic, the AIN information model 
organizes these labels distinct from, yet linked to, the internal system information with which they are 
associated in such a manner that real-time performance of the service is not compromised. 

As a first approximation of its implementation, a label (or symbol) could be simply a tuple, for example 
(text string, internal ID).  The textual component may be initialized and modified by the customer; while, 
the internal ID is assigned and managed by the system to reference various entities, such as an 
associated phone number, etc.  The customer can establish the association of a given label with some 
entity—e.g., a value, procedure, or process.  Furthermore, the customer may use these labels to 
symbolically express relationships, independent of the particular associated entities. 

The purpose of this label mechanism is to enable the customer to use customer-meaningful terms that 
are natural to him to express any conditions and aspects about the behavior of his telephony services.  
Not only is the customer provided a more user-friendly way to manage his services; more importantly, he 
is empowered to interact with the management and the execution of his services at levels of abstraction 
not previously realized with current systems. 

3.2 User Interface Synergism 

 James T. Smith Page 5 TINA’95 



AIN System Development -- A Customer-Centered Approach 

Multiple user interfaces (UI’s) are supported—e.g., textual, vocal, DTMF/IVR, and graphical—for 
the management and execution of the customer’s services. They all share a consistent “look-n-
feel.” In particular, changes to the behavior of one UI result in corresponding changes to the 
behaviors of the others.  Advanced multi-lingual pseudo-natural language interfaces, including 
scripting capabilities, also are supported by this architecture. 

The label construct represents the focal point of the customer’s interaction with the management of his 
services.  To generalize the simple implementation of a label mentioned above, a label consists of two 
logical components:  1) a system-side component (i.e., an internal ID) to reference and access system-
side objects, processes, etc., and 2) a customer-side component, which may have several different 
supported UI realizations—e.g., textual, vocal, iconic, pictorial—dependent upon the customer’s 
subscriptions.  For example, the text string “Family,” the vocal sound-bite “Family,” and the “Family” icon 
all map to the same Family label. 

Furthermore, the various customer interfaces for the management and manipulation of these labels 
maintain a coordinated behavior as the customer configures and uses them.  For example, the menu 
hierarchies associated with the customer’s menus on his PC-based interface and his DTMF/IVR 
interfaces provide equivalent navigational paths to the same functionality.  Quick-key short cuts on the 
PC interface coincide with #,*-key short cuts on the DTMF/IVR interface.  Association of the F5 key of his 
PC interface with a certain action results in the corresponding DTMF/IVR action being associated with the 
#5 key, and with the “pound five” phrase.  Thus visual, verbal, and tactile navigation of the service 
management functionality are always consistent. 

Not only is the customer’s service administration customer-centered, so also are all supporting AIN 
operational functions.  For example, billing of the customer’s services is based on the same terms that 
are used by the customer to administer her services.  Figure 1 below emphasizes the pivotal role that the 
label, as the foundation for symbolic abstraction, provides to this AIN architecture. 

Label

DTMF

IVR

Nat.Lang.

GUI

SMF

Billing

SCP

IP

The Customer The Network
 

Figure 1 Customer-Centered = Symbol-Centered 

While the spreadsheet paradigm typified by the example of Table 1 provides a powerful and concise view 
of the service context profile, it is by no means the only presentation format that the customer interface 
might take.  The customer-defined labels, together with system-defined labels, provide the foundation for 
the system's support of both: 1) a multi-lingual pseudo-natural language capability for the customer's self-
administration of his services, as well as 2) a scripting language capability for the creation—or 

 James T. Smith Page 6 TINA’95 



AIN System Development -- A Customer-Centered Approach 

packaging—of customer-defined service behaviors formed from system-defined service feature 
capabilities. 

The Label system provides the foundation for the implementation of the pseudo-natural language 
expression of customer definitions and service contexts.  As examples, the customer might express the 
following statements as she modifies her customer and service context profiles: 

Add  Johnny  to  Friends 

New  Individual  MyFax  IS  214-718-6398 

and 

If  Work  And  Fax  Then  Fwd2  MyFax  And  AlertMe  MyPager. 

In these examples, the boldfaced labels reference system-defined entities, and the italicized labels 
reference customer-defined entities. 

Grammar rules for this pseudo-natural language are determined from the customer’s subscription.  The 
service management features define the domain of permissible statements which the customer may 
make.  In the first example, the customer adds an individual named “Johnny” to a customer-defined group 
named “Friends.”  Next, the customer identifies a fax machine phone number to be associated with the 
individual “MyFax.”  Finally, the customer requests that any faxes received at his service number—such a 
determination is a content-based service—be forwarded to this fax machine, and that he be alerted via 
his pager—which effectively specifies a composite customer-defined service behavior. 

Multi-lingual versions of system-defined labels are supportable by the AIN.  During service subscription, 
the customer may select his language of choice from those that are supported.  To support additional 
natural-like—English-like, French-like, etc.—languages is a matter of mapping appropriate words and 
phrases to the system-defined symbolic labels which provide the interface between the various UI’s and 
the various AIN systems, and possibly of reordering their expected positions within phrases—new 
grammars. 

The following are implementations of the previous examples as they might appear in Spanish. 

Sumar  Juan  A  Amigos 

Persona  Nueva  MiFax  Es  214-718-6398 

and 

Si  Trabajo  Y  Fax  Entonces  Transferir  MiFax  Y  AlertMe  MiBeeper. 

3.3 User Information Synergism 

All customer-provided information is enterable once (per change) and in one unique place, in a 
consistent manner that is independent of which, of how many, or of what types of services are, or 
will be subscribed which might use or be affected by that information. 

Service-generic information—which could be applicable to many different service contexts—is managed 
independent of those services and features which might utilize that information.  Once such an item has 
been defined by the customer, it is available for use in constraining or modifying the behavior of any 
service feature.  Such information includes, for example, that normally found in a personal information 
manager (PIM), e.g., a day-timer and a phonebook. 

Temporal entities are an example of feature constraining information.  The execution of a feature need 
not require the time of day; however, the customer may wish that feature to be considered for execution 
only during a certain time period.  Modifying information identifies values, processes, etc. needed for a 
feature to complete, for example, the phone number to which a call-forwarding feature would redirect a 
call. 

As an example, were the customer to modify the meaning of “WorkHrs” used in Table 1, then every entity 
of the customer’s service management that is dependent upon the meaning of—associated with— 

 James T. Smith Page 7 TINA’95 



AIN System Development -- A Customer-Centered Approach 

“WorkHrs” is correctly affected—e.g., service context rules that refer to “WorkHrs,” and any other time 
periods that are built upon “WorkHrs.”  Similarly, a given customer-defined list of phone numbers—e.g., 
the group “PreferredAccounts”—could be used to affect multiple feature behaviors under different 
circumstances—e.g., “RegularHours” versus “WeekendHours.”  Such information is entered by the 
customer, managed by the system, and utilized during real-time in a consistent manner. 

Dependent upon the sophistication of the customer’s subscribed service management, quite complex 
service-generic abstractions can be developed (expressed) by the customer.  As examples, are the 
individual members of a group always explicitly identified as members of a given group, or may they be 
inherited by virtue of membership in another group of individuals that is inherited by the given group?  Are 
customer states—e.g., “DoNotDisturb” and “OnStandby”—to be treated as mutually exclusive—i.e., 
setting one state to ON automatically clears all others to OFF, or may logical AND’s and OR’s of states 
be specified—either explicitly as a defined composite state, or implicitly by the juxtaposition of two or 
more states within the specification of one service context? 

3.4 Normalization of Information & Processing 

Information management and feature processing are partitioned vertically into islands of 
independently implementable functionality.  The various types of service-generic information—day-
timer, phonebook, customer states, customer contexts, etc.—which the customer may specify are 
implemented so as to be administered and processed independently of each other in a plug-n-play 
manner. 

One implementation of a given service-generic functionality, say the day-timer, may be replaced with 
another implementation, without affecting the customer’s existing management of his service context 
profile—which utilizes the day-timer—or the execution of the service features which utilize such 
information.  In the service context profile example of Table 1, the “Time” and “Who” columns represent 
the total encapsulation of the customer’s management of temporal (day-timer) and personal (phonebook) 
contextual information as capabilities independent of each other and of the services to which they might 
be applied. 

The service context profile depends upon these capabilities only in an abstract symbolic manner that 
does not depend upon their particular implementations.  The encoding of temporal information by the 
day-timer, etc. is isolated from the remainder of the system.  For example, the management of 
group/individual inheritance within the customer’s phonebook, and the combining of states within the 
customer’s state manager are wholly contained within their respective implementations.  The substitution 
of a new day-timer with a new encoding of “WorkHrs” will not affect the symbolic meaning of “WorkHrs” 
within the service context profile, or its real-time processing by the customer’s feature manager. 

Consequently, application services and features no longer are developed as comprehensive self-
contained functions which individually incorporate proprietary day-timers, phonebooks, etc.  Such service-
generic functionality’s as a day-timer, a phonebook, and a customer state manager are no longer 
considered to be embeddable components of application functionality’s.  This approach to service design 
and development does require rethinking by the TINA community as to what should constitute a service 
or feature.  The following material will hopefully contribute to this re-evaluation. 

The customer no longer must subscribe to monolithic service packages—a la, Wide Area Centrex with 
PIM override—in which each component functionality is tightly integrated (embedded) with the others.  
Instead, the customer now is able to mix and match various feature capabilities as he so wishes.  The 
customer performs the final integration of those subscribed capabilities—via customer-centered service 
management—to achieve the personalized behaviors which are desired. 

Efforts have been made by various individuals and standards bodies—as well as by TINA—to identify 
standard sets of service independent building blocks (SIB’s) from which services and features could be 
tightly integrated—to create monolithic service packages.  This quest for logical SIB’s still is important, 
but a new approach to SIB integration is required.  This new approach to SIB development should 
produce capabilities which are—hot, i.e., real-time—plug-n-play in a customizable service management 
sense, rather than, integrable in a service creation (packaging) sense. 

 James T. Smith Page 8 TINA’95 



AIN System Development -- A Customer-Centered Approach 

For each service-generic functionality, e.g., the day-timer, a standardized set of interface methods are 
defined which all implementations of that functionality support.  For example, each implementation of (a 
given level of) the day-timer functionality must support querying to determine which, if any, of its time 
entities are active at a given moment in time, to determine where two given time entities intersect, to 
determine whether one entity is dependent upon—built upon, inherits from—another, etc. 

3.5 Symbolic Declarative Information 

Information management and feature processing are partitioned horizontally into layers of 
increasing abstraction and generalization.  The customer is provided with the ability to state his 
problems (desired service behaviors) and their solutions—in customer-understandable terms—in 
as abstract and as general a manner as possible. 

For each layer of functional abstraction, the processing of the other layers with which that layer may 
interact are symbolically represented.  The purpose for this symbolic representation is to enable each 
given layer not only to invoke—procedurally—those other functionality’s, but also to provide the basis for 
that layer to reason regarding the benefits, costs, etc. of each such invocation.  The provision for such a 
reasoning capability by each system about its alternatives and their consequences is fundamental to the 
development of truly intelligent networks. 

As a general concept, knowledge may be encoded declaratively in passive data structures which are 
interpreted by other procedures, or procedurally as programmable units that encapsulate that knowledge.  
As a comparison with traditional programming concepts, declarative knowledge is analogous to the 
source code of a program, while the procedural knowledge is analogous to the object code of a program. 

Not only may source code be executed interpretatively, but also (incrementally) compiled for more 
efficient execution.  In a procedural sense, it is self-documenting—to anyone or thing able to interpret it.  
A given block of source code may be analyzed from a number of viewpoints.  For example, it’s resource 
utilization, solution approach, etc. can be compared with those of alternate source code which might 
satisfy the same computational need more quickly, efficiently, etc. 

Such is the potential power of a symbolic declarative representation of the information that comprises the 
customer’s service administration.  The information that the customer provides has the potential to be 
utilized in many contexts and for many purposes beyond its original intent, as is shown in later sections. 

As examples of a symbolic declarative representation, the service contexts of the service context profile 
each symbolically associate various types of contextual information with the execution of the customer’s 
subscribed service features.  Not only the customer’s contextual entities but also the system behaviors of 
the subscribed features that are moderated by them are represented in the service context profile in 
implementation-independent symbolic form!  Each service context is a symbolic statement about service 
behavior or activity desired by the customer, independent of any representations and implementations of 
the underlying entities which these symbols represent. 

Consider the following entry from Table 1 in Section 2: 

 Late * OnCall Busy FCW Alert Loud 
The time period “Late,” the customer state “OnCall,” the system state “Busy,” the service feature “FCW”—
flexible call waiting, its parameter option “Alert,” and its value of “Loud” are all—customer or system-
defined—symbolic labels which are used by the customer to express a desired service behavior along 
with the circumstances under which that behavior would be desired. 

The symbolic interpretation of the meaning of this service context is independent of the current 
implementations of the entities which these symbols represent.  As the network evolves through future 
AIN call-model releases, etc., these implementations may change.  However, the symbolic meaning of 
this service context statement of the customer remains valid, meaning the same conceptually as it did 
when originally expressed. 

In general, the customer may be permitted to define hierarchies—or even lattices—of successively 
complex time periods, groups of individuals, sets of abstract customer states, etc.  Identifiable system 
states and service feature capabilities, likewise, are symbolically characterized (classified, modeled) 

 James T. Smith Page 9 TINA’95 



AIN System Development -- A Customer-Centered Approach 

within the AIN service description profile.  Their corresponding implementations are managed within the 
service management profile.  The typical residential customer might view any cause for a busy state in 
the AIN as simply “Busy.”  On the other hand, a business customer may wish to distinguish between line-
side and trunk-side busy, etc. 

The service contexts portrayed in Table 1 as rows of a spreadsheet are more accurately represented as 
declarative rules of a rule-set, as suggested by the last example in Section 3.2.  The customer 
symbolically expresses the conditions and characteristics of the service behaviors desired.  The domain 
of predicates (or conditions) and of actions (or behaviors) the customer may express is governed by the 
service feature capabilities to which he has subscribed. 

3.6 Flexible Processing Strategy 

The symbolic declarative representation of the customer’s service management information is 
neutral to any specific service feature.  This provides the basis for a virtually unlimited flexibility as 
to what applications such information may be applied, and as to how and when that information 
may be utilized.. 

Consider the task of selecting from a customer’s service context profile a context rule that is applicable to 
process at a given moment in a call’s execution.  One source of information—e.g., temporal conditions 
from the day-timer—could be examined, and the results then used to limit or focus consideration of other 
sources.  Which source should be processed first? the customer’s day-timer? her phonebook? her state 
management?  the system’s state management? ...  Could multiple sources be examined in parallel and 
their results then compared? 

Many strategies could be implemented to support real-time processing of this information.  On the one 
extreme are implementations that for reasons of performance would encode this information rigidly into 
procedural decision graphs with process flows programmed explicitly as to when and to how this 
information is used.  At the other extreme are quite flexible open-ended production system approaches 
such as found in many AI (artificial intelligence) knowledge-based systems. 

The declarative information model of this architecture is sufficiently flexible that the information in the 
customer context and service context profiles indeed can be compiled to generate optimized but rigid 
procedural decision graphs—such as might be generated for current AIN SCP’s—based upon a specific 
procedural processing strategy.  Thus, the traditional procedural approach is readily implementable from 
this declarative information model. 

However, all possibilities (not only those that are normally expected, but also exceptional cases) need to 
be addressed by such a procedural version.  In the case of one commercial AIN SCP, the decision 
graphs (called CPR’s, i.e., customer provisioning records) typically contain as much or more logic for 
exception handling than for normal processing. 

Any changes to the information in the profiles or to the established processing procedures would require 
regeneration of the decision graphs.  This approach is analogous to the rule-set compiler technology 
used by some expert system shells which convert the declarative knowledge base into a procedural 
program—effectively, a decision graph.  Fortunately, compilation to a procedural form is not the only way 
to achieve the desired real-time performance. 

The strategic approach—more flexible, extendible, scaleable, etc.—is to employ representations that are 
enhanced for real-time processing but do not sacrifice of the declarative nature of the information.  The 
flexibility with which the declarative form of information may be applied during real-time more than 
compensates for apparent performance gains that rigid procedural compilation might produce. 

Generally, the service management representation of information must accommodate the customer’s 
view and support efficient interactive editing by the customer; while, the real-time representation needs to 
be optimized for query processing.  This is a generalization of the problem that every DBMS must 
address.  In fact, analogues of DBMS solutions are applicable here. 

The strategic is to use an optimization approach which compiles the representation, but not the 
information!  As an example of such, recall in Section 3.2 that the Label concept was introduced as the 

 James T. Smith Page 10 TINA’95 



AIN System Development -- A Customer-Centered Approach 

symbolic layer of abstraction between any customer interfaces that might be implemented, and any AIN 
applications that might use the information entered via those interfaces. 

By its design, the Label abstracts (compiles) the customer interface details—e.g., particular language, 
customer-centered names, device—from the information that the real-time SCP of the AIN needs to 
process the customer’s features, since the real-time processing of that information is not dependent upon 
such attributes.  On the other hand, such details still are available via the Label mechanism should they 
be needed, e.g., in support of an IP-related feature. 

The author has described elsewhere a day-timer concept which utilizes a customer-centered semantic-
net-like implementation by which the customer expresses temporal entities as well as a bit-packed 
encoded form of that information for real-time use.  All the temporal information content of the one is 
present and accessible in the other! 

Yet another approach to the conditioning of declarative information for efficient real-time processing is 
analogous to the hash functions, etc. that are used by relational databases to improve their performance.  
The result of this approach is a real-time implementation whose performance should approximate that of 
the compiled decision tree, but which still provides the greater flexibility of the declarative form.  
Declarative hashing can be implemented more intelligently than the arbitrary hash mechanisms used by 
relational databases. 

The proposed AIN architecture implements the conditioning approach as a feature management context.  
Based upon its analysis of the customer’s other context profiles, the AM maintains the feature 
management context to provide guidance to the real-time FM as it focuses processing upon temporal, 
personal, state information, etc. in whatever strategy might yield better performance in the selection of the 
next appropriate service context entry to be considered. 

This analysis can utilize feedback from the customer’s prior service usage—such as would be available 
from the billing system.  Via such analysis, the AM (predictively) predisposes the FM via the feature 
management context to adopt (consider first) certain processing strategies over others.  Any valid 
strategies still remains available to the FM, should its use be indicated by other real-time events. 

The AIN thus has the capability to adapt to (to learn) those feature behaviors that appear to be more 
characteristic of the customer.  The net effect of this conditioning approach is that the representation and 
the organization of the information—and of the systems which interpret and process it—are subject to 
continual tuning.  The consequence is that a new logical decision graph is continually being updated 
based upon new information from the customer or feedback from the system. 

3.7 Information Abstraction & Late-Binding Interpretation 

The declarative symbolic information of one layer represents an abstraction (model) of the 
processing (procedures) of lower functional layers.  Under different real-time circumstances, the 
same information abstractions may be mapped to different realizations, and may be applied in 
different ways to satisfy quite different requirements.  Information abstraction leads to information 
reuse. 

The interpretation of symbolic phrases such as “Alert Loud” and “Alert Quiet”—from the service context 
profile of Table 1 in Section 2—is dependent upon the real-time contexts in which they are applied, as 
well as upon customer service specifications and preferences.  These symbolically expressed feature 
behaviors could be interpreted to mean to “buzz” versus to “vibrate” the customer’s pager in one instance, 
and in another instance to mean to display a “large” phone icon in the center of customer’s PC screen, 
versus a small blinking icon in its corner in another instance.  These interpretations also are based upon 
the results of the feature negotiation process explained in the next section 

This customer-centered information abstraction focuses upon the customer’s problems—e.g., the need 
for alerting and security—rather than upon currently available AIN solutions—e.g., the use of paging, 
distinctive ringing, PIN’s, and voice prints.  This abstract symbolic information that today is applied to the 
operation of a pager or the invocation of a distinctive ring, could just as easily be applied tomorrow to a 
device, mechanism, or process not even conceived of today—but which provides a solution to the 

 James T. Smith Page 11 TINA’95 



AIN System Development -- A Customer-Centered Approach 

customer’s problem!  The customer’s problems tend to be persistent; while, current AIN solutions to those 
problems can be transitory. 

This approach to AIN service delivery is analogous to the mathematician who has expressed (modeled) a 
physically meaningful problem (electrical, structural, etc.) as a set of equations (algebraic, differential, 
etc.), whose solution (if solvable) provides the solution to the problem.  The statement of the problem as a 
set of symbolic equations represents an abstract solution of the problem.  As new methods (e.g., 
numerical analysis) and new mechanisms (e.g., computers) become available, they readily may be 
applied to this general problem statement to expand the size, reduce the time, increase the accuracy, etc. 
of any specific solution. 

The concept of late-binding (or lazy-binding) refers to postponement of the determination of the binding 
(association, matching) of an object, symbol, etc. with its value, interpretation, processing, etc. until that 
binding is actually needed. 

The information contained in the various context profiles consists of symbolic patterns whose meanings 
are (directly) determined, or (indirectly) inferred, etc. as the result of appropriately pattern-matching their 
information abstractions with potential realizations and interpretations.  Examples of the former case 
would be the resolution of “WorkHrs” or “MyFamily” from the customer’s PIM.  The resolution of 
appropriate meanings (realizations) for “Alert Loud” and “Alert Quiet” are examples of the latter case. 

As described in Section 1.2, the service description profile provides a comprehensive declarative view of 
AIN system features and capabilities and how they could be applicable to various categories of customer 
problems.  For example, distinctive ring and paging are identified as capabilities that can be used to 
provide alerting. 

As described in Section 1.3, the service management profile associates these declaratively described 
features and capabilities with details regarding their implementations within the AIN.  This associated 
information may identify specific platforms (e.g., SSP, IP) where they reside, specific resources they 
require—e.g., access to a customer's voice-prints, access to a Radish-capable CPE, etc. 

One critical characteristic of intelligent entities is their self-awareness.  Elements of this characteristic are 
beginning to appear in today’s computer systems in the form of plug-n-play hardware, and ORB-like and 
OLE-like software.  As part of their implementations, these components have such self-knowledge as to 
how they should be configured, to what capabilities they can provide, etc. 

This possession of self-knowledge is characteristic of the features and capabilities available in this AIN 
architecture.  Not only can an AIN capability provide its designed functionality when requested, 
information also can be provided the potential requester regarding what it does, how and when it is done, 
what resources are required, etc.  In other words, each AIN capability is self-explanatory sufficiently for 
the potential user to determine its applicability to the potential user’s need. 

The achievement (representation) of this self-knowledge is another example of the application of 
symbolic declarative information.  The symbolic declarative information of one functional layer possesses 
an abstraction (model) of the processing (procedures) of lower functional layers.  This concept of self-
knowledge is applied recursively from a capability’s highest level of functional abstraction—e.g., “Alert 
Loud”—to the lower-level objects, functions, etc.—e.g., the TCAP messages and parameters—which 
implement it. 

Within this architecture, an information duality exists.  From any level of abstraction downward, there is 
both the recursive interpretive self-knowledge form of that functionality, as well as the compiled—no self-
knowledge, procedural-like—form of that functionality.  This concept may be viewed as a generalization 
of the approach taken by a numeric application that provides a software-based implementation of floating-
point arithmetic for use in circumstances where a hardware-based floating-point unit is not available.  
Another analogous example of this type of duality is the normal kernel of an OS from which internal 
symbols have been stripped, and the debug kernel in which they have been retained to assist software 
developers. 

Under normal circumstances when the customer’s services can be delivered as requested, the self-
knowledge of a capability may not be needed at real-time by the FM.  The capabilities identified by the 

 James T. Smith Page 12 TINA’95 



AIN System Development -- A Customer-Centered Approach 

customer’s AM have been matched to the requirements of the customer’s service contexts. The 
customer’s FM needs only to invoke those capabilities as previously determined by the AM. 

On the other hand, this self-knowledge is crucial to the feature interaction and negotiation management 
described in the next section.  The recursive descent into the self-knowledge of a feature capability by the 
customer’s AM needs be only deep enough to satisfy the AM as to the appropriateness of a capability to 
satisfy the contexts of the customer’s service profiles.  The FM may be confronted with intelligently 
improvising a workable solution for the customer.  This self-knowledge is crucial to that task. 

3.8 Feature Interaction & Negotiation Management 

The customer’s profiles are treated by this AIN architecture as representing the customer’s 
preferred service feature behavior, rather than as the expression of a set of rigid specifications.  
The goal of the FM is to select the service contexts which better satisfy the customers preferences 
and also are compatible with real-time system states and capabilities.  In particular, the FM’s of 
interacting customers utilize these symbolically expressed preferences as the basis for negotiation 
of service behavior that is acceptable to those parties. 

The identification of possible interactions, and the detection of real interactions in AIN architectures where 
each service has been designed and implemented to execute independently of all others is a nightmare 
situation.  Much of feature interaction conflict is associated with the ambiguous application of multiple 
services to the same context.  As an example, in the case of single-customer feature interaction—i.e., the 
services of one customer, flexible call forwarding (FWF) would forward the caller while flexible call waiting 
(FWD) would place the caller on hold.  To require the customer to choose between subscriptions to these 
two services is a rather extreme approach to feature interaction management, as is to arbitrarily prefer 
one over the other. 

An example of multi-customer feature interaction exists when a customer being called desires to perform 
call screening, etc. based upon calling name delivery (CND); while, the calling customer desires to block 
the delivery of his CND.  Such feature interactions are not so easily resolved.  Either one or both 
customers fail to receive benefit of the services to which he subscribed.  The complexity of possible 
feature interactions will be too diverse and sophisticated for system managers and service developers—
independent of the customer—to provide general arbitrary solutions that satisfy a majority of customers, 
let alone are satisfactory to everyone. 

A method by which appropriate features for each possible context may easily be specified by the 
customer would greatly reduce the magnitude of the feature interaction problem.  Features that 
supposedly conflict could be coordinated to exhibit the opposite appearance of cooperation in the view of 
the customer—which is the opinion that really matters!  Any approach to feature interaction management 
must be a customer-centered approach to be successful. 

To facilitate such an approach in the case of single-customer feature management, this architecture 
permits the customer to organize his contextual information in a manner which is consistent across all 
services, service management systems, etc.—as has been explained.  The feature management process 
is decoupled from any particular application service into an AM that manages the resolution of the 
customer contextual information, and an FM that manages the execution of his services, based on the 
results of that resolution. 

In the case of multi-customer feature interaction between the feature behaviors of different customers, 
feature negotiation management provided by the AIN negotiates a fall-back (or alternative) position to 
service delivery, so as to avoid feature interaction deadlock, while providing the involved customers with 
an acceptable (though perhaps less than optimal) level of (or alternative to) the original service behavior. 

This negotiation concept is applicable to mobility-oriented services such as UPT (universal personal 
telephone) in which the remote UPT location may not be able to support the full set of customer services 
as subscribed.  The management of the services of multiple customers, each of which is registered to a 
common CPE, is amenable to this approach. 

The principles of negotiation are generally understood by everyone.  Negotiation is an iterative process of 
announcement-bid-award in which an entity poses its need to other entities who might be able to satisfy 

 James T. Smith Page 13 TINA’95 



AIN System Development -- A Customer-Centered Approach 

the request, receives offers from responders, and accepts the best offer of assistance.  Variations in the 
negotiation process include the possibility of iterative offers and counter-offers, of teaming arrangements, 
etc. 

In each instance of negotiation, three fundamental components may be identified: 
• exchange of information -- by requests, responses, etc., 
• evaluation of exchanged information -- by each entity from its own local perspective, and 
• final agreement (contract) -- by mutual selection. 

In preparation for a solution by negotiation, there are preparatory activities which each involved party 
should complete.  These include such items as the clarification (from each negotiator's perspective) of: 

• absolute bounds of this give-n-take effort, 
• compromise fall-back positions, multiple, if possible, and 
• evaluation criteria by which to judge any and all offers. 

In support of the negotiation process, mechanisms such as languages (data structures), and protocols 
(negotiation rules) must be in place by which each party may accurately and succinctly communicate 
requests, bids, etc.  Under the assumption that the involved parties are willing to cooperate, negotiation 
provides a reasonable vehicle for the identification of common ground, i.e., a global view of the problem's 
solution which is locally acceptable to each party involved. 

In general, the system’s negotiation mechanisms should facilitate the customer's indication of fall-back 
service behaviors which he would accept.  For example, the customer may prefer ADSI prompts, but 
would accept voice prompts, or even distinctive tones, were ADSI prompts not available.  Much of multi-
customer feature management is the matter of determination of an acceptable level of service delivery 
common to the involved parties, similar to the functionality now provided by smart modems that support 
multiple bandwidths, error-correction and data compression schemes, etc. 

The information in the customer context and service context profiles is treated by this AIN architecture as 
representing the customer’s preferred or approximate service feature wishes or desires, rather than as 
the expression of a set of rigid specifications.  While the AIN always will seek to satisfy the customer’s 
requested feature behavior exactly as specified, the AIN is permitted (empowered) to satisfy these 
requests as well as it can. 

So long as the FM can deliver the customer's services as requested in the service context profile, the 
customer should not experience any undesirable single-customer feature interactions.  Circumstances 
can arise, however, in which the customer cannot be provided his services as requested.  This situation 
can be due to multi-customer feature interactions—if another customer's wishes conflicts with his—or 
inter-network feature interactions—if the public network or CPE technically is not able to provide the 
services as requested. 

Under such circumstances, the customer’s FM provides feature interaction negotiation management in 
behalf of the customer.  The goal of this process is to provide the customer with alternate service 
behavior that is as satisfactory as possible, while avoiding behaviors that definitely would be 
unsatisfactory.  What may be called satisfactory or unsatisfactory is determined from the (explicit or 
implicit) alternatives identified from the customer in his service subscription and service context profiles, 
or otherwise by system-provided defaults. 

A solid foundation for feature interaction negotiation management is provided by the concepts and 
capabilities of this AIN architecture described in Sections 3.1 through 3.7.   

The counterpart to the symbolic declarative constructs that are the basis of the customer’s service 
administration is the incorporation of self-knowledge within AIN features and capabilities.  Just as the 
customer can create and organize the entities of his administrative PIM and customer state management, 
the developers and management of the AIN provide this self-knowledge support as part of the 
development and deployment of each AIN feature and capability.  This process may be viewed as a 
generalization of the process of associating keywords with a technical paper to assist potential readers in 
their search for appropriate reference materials. 

 James T. Smith Page 14 TINA’95 



AIN System Development -- A Customer-Centered Approach 

Just as the IEEE provides a taxonomy of codes by which a member can classify himself professionally, 
so also are implemented symbolic declarative taxonomies of customer requirements—e.g., alerting, 
privacy, security—and of AIN capabilities—e.g., distinctive ringing, call-blocking, PIN’s—which are cross-
referenced.  These self-knowledge taxonomies range from quite abstract to quite specific.  “Alert,” “Alert 
Quietly,” “Alert Quietly w/ Pager,” and “Alert Quietly w/ Pager LCD only” are examples of four levels of 
customer alerting of increasing specificity.  With “Messaging” considered to be a weak form of “Alerting,” 
passive rather than active, the leaving of a message is one way to leave an alert (notification) that the 
customer would be expected to receive eventually. 

The following is a listing of feature negotiation management heuristics (i.e., rules-of-thumb), that define 
strategies which the customer’s FM may apply as it attempts to satisfy the customer with acceptable 
feature behavior: 

• Satisfy the request at a level of specificity equal to or greater than that of the request. 
• Satisfy the request based on a level less specific (more abstract) than that of the request. 
• Partially satisfy the request based on a subset of the requested capability, if such exists. 
• Partially satisfy the request based on an economical (e.g., monetary-wise, resource-wise) 

generalization of the requested capability. 
• Partially satisfy the request based on any generalization of the requested capability. 
• Alternatively satisfy the request based on a generalization of the service context, e.g., by 

weakening the customer’s constraints to identify another less specific service context with an 
associated capability behavior that could be satisfied by one of the above heuristics. 

• In a backward-chaining sense, is there identifiable another service context that could be 
accomplished, which could make the currently focused service context decidable? 

These heuristics are representable as pattern-matching problems that may be implemented using 
production system (rule-based) technology.  Each heuristic may be implemented as a knowledge source 
of a blackboard-like distributed artificial intelligence system.  The customer’s FM provides the role of the 
blackboard monitor.  Again, the symbolic declarative nature of this AIN architecture is crucial to the 
realization of such feature negotiation. 

Of particular interest is the second heuristic above that relates to the solution of a problem at a more 
abstract level than it is originally stated.  Consider the case where a customer is provided service by one 
AIN service provider, but is currently located (registered) physically in the jurisdiction of another 
provider—similar to the roaming problem in cellular service.  Suppose that the AIN SCP’s of the two 
providers supported communication of the customer’s FM at his service provider’s SCP with the FM that 
has jurisdiction at the customer’s remote (roaming) location. 

These two FM’s via feature negotiation are able to virtualize the customer’s services at the remote site.  
The “Alert’s,” etc. are mapped (negotiated) to acceptable behaviors at the guest location.  Likewise, low-
level system states at the guest location are abstracted and passed to the customer’s SCP where they 
are used to match service contexts, from which behavior requests flow back to the guest location’s SCP. 

4. Conclusion and Remarks 
A high-level view of an information model and system architecture for the AIN—the Advanced Intelligent 
Network—has been presented which places the customer as the focus of all service design, 
development, deployment, and management.  In particular, this paper has indicated how several 
technologies from the general field of distributed artificial intelligence (DAI) may be applied with far-
reaching consequences. 

The presentation has been broad and high-level so that the continuity of all the presented concepts could 
be emphasized.  The references below contain more detailed information regarding how these concepts 
may be implemented. 

Some of the ideas promoted here will require near-radical change to the approach now being taken by 
the industry regarding all—not restricted to AIN—service design, development, deployment, and 

 James T. Smith Page 15 TINA’95 



AIN System Development -- A Customer-Centered Approach 

management.  The realization of all these concepts will necessarily be an incremental one.  They have 
been presented in chronological order—what must be implemented first, second, ... 

The quantity and variety of AIN services that have been developed under the traditional mode are 
relatively small and limited.  Hence the AIN environment is a natural place to begin design and 
implementation of these concepts. 

Currently, effort is being focused on the mapping of these concepts to currently available AIN platforms 
(e.g., AT&T’s AI-Net, and Bellcore’s ISCP).  These concepts are also being applied to the upgrade and 
enhancement of our OAM&P.  Everyone is affected from the product management organization that 
conceives of new services through to the operations support organizations that maintain the network on a 
daily basis. 

Hopefully, an open dialogue will be generated around these concepts and result in a much more adaptive 
and user-friendly public network. 

 James T. Smith Page 16 TINA’95 



AIN System Development -- A Customer-Centered Approach 

 James T. Smith Page 17 TINA’95 

5. References 
[1] Bach, Maurice J., The Design of the UNIX Operating System, Prentice-Hall, Inc., Englewood Cliffs, 

NJ, 1986. 

[2] Bobrow, Daniel G. and Allan Collins, Editors, Representation and Understanding--Studies in 
Cognitive Science, Academic Press, New York, NY, 1975. 

[3] Bond, Alan H. and Les Glasser, Editors, Readings in Distributed Artificial Intelligence, Morgan 
Kaufman Publishers, San Mateo, CA, 1988. 

[4] Davis, Ernest, "Constraint Propagation with Interval Labels,"  Artificial Intelligence, North-Holland 
Publishing, 32:281-332, 1987. 

[5] Davis, Randall and Reid G. Smith, "Negotiation as a Metaphor for Distributed Problem Solving,"  
Artificial Intelligence, North-Holland Publishing, 20:63-109, 1983. 

[6] Ellis, Gerald, “Compiling Conceptual Graphs,”  IEEE Knowledge & Data Engineering, 7:68-81, 1995. 

[7] Engelmore, Robert and Tony Morgan, Editors, Blackboard Systems, Addison-Wesley, Reading, MA, 
1988. 

[8] Forgy, C.L., "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem,"  
Artificial Intelligence, North-Holland Publishing, 19:17-38, 1982. 

[9] Graver, Jack E. and Mark E. Watkins, Combinatorics with Emphasis on the Theory of Graphs, 
Springer-Verlag, New York, NY, 1977. 

[10] Griffeth, Nancy D. and Yow-Jian Lin, Eds., Special Issue: “Telecommunications: How Many 
Features Can You Add?”  IEEE Computer, Aug. 93. 

[11] Griffeth, Nancy D. and Hugo Velthuijsen, “The Negotiating Agents Approach to Runtime Feature 
Interaction Resolution,” Feature Interactions in Telecommunications Systems, IOS Press, 
Washington, D.C. pp.217-235, 1994. 

[12] Lin ,Yow-Jian and Nancy D. Griffeth, Eds., Special Issue: “Managing Feature Interactions in 
Telecommunications Systems,”  IEEE Communnications, Aug. 93. 

[13] Miranker, Daniel P., TREAT: A New and Efficient Match Algorithm for AI Production Systems, 
Morgan Kaufman Publishers, San Mateo, CA, 1990. 

[14] Mylopoulos, John and Michael L. Brodie, Editors, Readings in Artificial Intelligence & Databases, 
Morgan Kaufman Publishers, San Mateo, CA, 1988. 

[15] Pearl, Judea, Heuristics--Intelligent Search Strategies for Computer Problem Solving, Addison-
Wesley, Reading, MA, 1984. 

[16] Smith, James T., “AIN System Design & Information Model Proposal--A Data-Driven Approach,”  
GTE Internal Document Jan. 94. 

[17] Smith, James T., “An Approach to Customer-Centered Interfaces,”  Third International Conference 
on Universal Personal Communications, pp. 619-623, Sept. 1994. 

[18] Smith, James T., “Meeting the Service Creation Challenge Using the ISCP,”  GTE Service Creation 
Workshop-94, Nov. 1994. 

[19] Smith, James T., “AIN System Development: The Customer Centered Service Context Prolile,” 
International Communications Conference (ICC-95), Jun. 1995. 

[20] Waterman, Donald A., A Guide to Expert Systems, Addison-Wesley, Reading, MA, 1986. 


	1.The Proposed Model -- a First Pass
	1.1.Top-level Service Management
	1.2.Service Description Profile
	1.3.Service Management Profile
	1.4.Service Control Loop
	1.5.Service Subscription Profile
	1.6.Customer Context Profile
	1.7.Service Context Profile

	2.An Example of a Customer’s Service Context Prof
	3.Some Far-Reaching Consequences of this Design
	3.1Customer-Centered Service Management
	3.2User Interface Synergism
	3.3User Information Synergism
	3.4Normalization of Information & Processing
	3.5Symbolic Declarative Information
	3.6Flexible Processing Strategy
	3.7Information Abstraction & Late-Binding Interpretation
	3.8Feature Interaction & Negotiation Management

	4.Conclusion and Remarks
	5.References

