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ABSTRACT 
This paper presents the results of research related 
to the verification and validation (V&V) of on-line 
learning neural networks (OLNN) that continually 
adapt and evolve.  Such is the situation with 
OLNN-based air-flight controllers developed at the 
Institute for Scientific Research, Inc. (ISR).   

For such systems to be employed in commercial 
aircraft, a certification process is required that 
addresses the capabilities and risks associated with 
a system that is continually adapting and evolving.  
This research is addressed by the NASA funded 
project “Development of Methodologies for 
Independent Verification and Validation of Neural 
Networks,” Research Grant NAG5-12069.  

ISR has devoted much effort to understanding the 
complexity of this problem and to the development 
of approaches to address this V&V requirement.1  
Because of adaptation with use, an OLNN cannot 
be pre-certified at release time, simply based on the 
analysis of initial training sets.2 

The findings and approaches presented here are 
based upon an analysis of the foundation principles 
and techniques that underpin the pilot certification 
process by which pilots are deemed sufficiently 
prepared to operate an aircraft.  Such areas as 
human factors analysis and accident analysis have 
been extrapolated to identify corresponding 
problems and opportunities in addressing the 
certification of an OLNN-based system. 

1.0 INTRODUCTION 

Humans and neural networks have much in 
common, both functionally and architecturally.  
The historical development and success of artificial 
neural network systems has depended heavily upon 
efforts to model and mimic at the biological level 
the neural systems of living things.  This study 
attempts to incorporate higher-level psychological 
considerations.  The certification of humans 
provides a framework for understanding additional 
considerations as to how neural network systems 
could and should be verified and validated. 

The defining characteristics of complex systems 
such being considered here include the attributes: 
(1) adaptive, (2) autonomous, and (3) non-
deterministic.  Formal definitions of each are: 

y Adaptive – the capacity or suitability for, 
or the tendency toward change, 
modification, etc.  

y Autonomous – being free from external 
control and constraint in action and 
judgment, independent in mind or 
judgment, self-directed.  

y Non-deterministic – the property that a 
computation or execution may yield 
multiple plausible results.  

Complex systems are developed with these 
attributes because of the potential benefits and 
functionalities enabled.  However, such attributes 
also represent a system engineer’s conundrum.  
They inherently introduce a risk of uncertainty and 
failure leading to considerations such as: 

y Fault-tolerance – ability to detect and 
recover from failure.  

y Graceful degradation – ability to perform 
less than optimally, rather than cessation 
of that function. 

2.0 THE HUMAN-IN-THE-LOOP 

The introduction of the human-in-the-loop not only 
imbues a system with the aforementioned 
attributes, but the human also contributes to the 
mechanisms of fault-tolerance and graceful 
degradation.  However, the human-in-the-loop 
introduces yet another class of problem, 
specifically human error—humans make mistakes.  

Various studies have implicated human error in a 
variety of occupational accidents.3  With safety-
critical system, human lives may be at risk. The 
prevention of such undesirable outcomes, becomes 
a top priority that may necessitate less desirable 



solutions and performance levels.  To address this 
problem, special tools, techniques, and procedures 
are available: (1) the pilot certification process; (2) 
human factors analysis (HFA); (3) accident 
analysis; and (4) human error theory.  

2.1 Pilot Certification 
The purpose of pilot certification stated by the 
Federal Aviation Administration (FAA) and the 
Department of Transportation4 is “… to enhance 
the ability of pilots to meet the evolving demands 
of the National Airspace System and operate safely 
and effectively in this environment.”  This process 
is to verify and validate that the pilot (the human-
in-the-loop) meets his system design requirements.   

The pilot certification process was developed and 
has been analyzed from various perspectives.  In 
this study, the pilot certification process is viewed 
in terms of how it addresses performance—normal 
or standard operation of the aircraft, and safety—
continued fault-tolerant, possibly degraded, 
operation under abnormal conditions. 

2.2 Human Factors Analysis 
The human-in-the-loop introduces a significant 
limitation to how other system components can be 
designed to address systems and operational 
requirements.  The systems engineer must work 
within the physical, physiological, mental, and 
psychological limitations of the human being.  The 
minimax challenge—to maximize system 
performance yet minimize the possibility of 
failure—motivates such disciplines as human 
factors analysis and accident analysis—the study of 
the circumstance and causality of accidents. 

Simply stated, human factors analysis (HFA) is the 
study of people in their working and living 
environments.5  HFA is concerned with 
relationships between people and machines, people 
and environments, and people and other people.  
HFA seeks to optimize the effectiveness of the 
system with respect to safety and efficiency, and to 
optimize the well being of the individual.     

2.3 Accident Analysis 
Comprehensive theories have been developed to 
characterize system accidents and failures, 
especially those that are human-related.  Safety-
critical system domains, such as aeronautics, have 
provided fertile areas to study.  The aerospace 
industry was the originator and has been the largest 
contributor and beneficiary.6 

Accidents generally are complicated events that 
result from a myriad of interrelated causes and 

circumstances—called failure events, the last of 
which culminates in the failure.7  These events may 
be active failures—those actions or inactions that 
ultimately cause an accident, or latent failures—
other circumstantial errors that affect the sequence 
of events that characterize an accident 

While a mesh of active and latent failures may be 
adequate to describe the chronology of an accident, 
it does not adequately capture deeper relationships 
among those failure events.  Previously mentioned 
system attributes (adaptive, autonomous, and non-
deterministic), together with the innate capabilities 
and error proneness of the human must be 
juxtaposed with an accident’s chronology mesh of 
active and latent failures to explain its cause(s) and 
to develop reasonable preemption or remediation 
approaches for that accident type. 

2.4 Human Error Theory  
In support of this juxtaposition, accident analysis 
practitioners and human factors analysts have 
developed comprehensive frameworks of human 
error that organize and explain an accident’s mesh 
of failure events from a human perspective.8 

One early approach is Frank Bird’s Domino 
Theory, which promoted the idea that, like dominos 
stacked in sequence, mishaps are the end result of a 
series of errors made throughout the chain of 
command9.  James Reason extended this theory to 
his Swiss Cheese model that identified a taxonomy 
of multiple levels at which active and latent 
failures could occur and interact.10 

The United States military has developed a 
comprehensive framework, the Human Factors 
Analysis and Classification System (HFACS), from 
which to identify and analyze aeronautical 
accidents.11  The HFACS framework has since 
been applied to commercial aviation, as well as in 
other safety critical problem domains, such as the 
nuclear and medical industries.12 

3.0 HFACS—HUMAN FACTORS 
ANALYSIS AND CLASSIFICATION SYSTEM 

The HFACS treats individual operators as an 
elements in a larger safety critical system. It 
analyzes error events by considering relationships 
between elements in the system. The HFACS 
describes a taxonomy consisting of four first-level 
tiers of failure, namely: (1) Unsafe Acts; (2) 
Preconditions for Unsafe Acts; (3) Unsafe 
Supervision; and (4) Organizational Influences.  
This paper considers only the first tier.  



The project has analyzed all four tiers.  Two major 
types of relationships were considered: (1) those 
related to the taxonomy of actual unsafe acts, and 
(2) the causal-effect relationships among the 
various tiers of the HFACS framework. This paper 
focuses on the first type.  

While the HFACS focuses on the roles of humans 
in the causation of accidents and failures, many 
insights gleaned from the HFACS are applicable to 
other system components.  Other researchers have 
contributed extensions to the HFACS as they 
adapted the HFACS to their particular analysis 
requirements.13 

Tier 1 Unsafe acts are operator actions or inactions 
that occur immediate to, and often trigger, an 
adverse event, previously termed an active failure. 
Unsafe acts are further classified into two 
categories, violations and errors.  The 
differentiation between violations and errors is 
based on whether the action is currently considered 
acceptable, or legal, behavior. 

y Violations, in contrast to errors, are willful 
deviations of accepted regulations, 
whether or not they actually result in 
failures.  Violations are further divided 
into the following sub-types: 

� Routine violations are part of a 
behavior pattern.  They are known to 
be unsafe acts that often do not result 
in immediate failure. 

� Exceptional violations are not typical 
of an individual nor condoned by 
management. These isolated offenses 
may or may not involve malice, the 
intention to cause harm or failure. 

y Errors are legal mental and physical 
activities that, nevertheless, fail to achieve 
their intended outcome.  Errors are further 
decomposed into the following sub-types:   

� Skill-based errors occur during 
execution of a familiar procedure that 
require little or no conscious thought.  

� Perceptual errors are 
misinterpretations of what is seen, 
heard, or received through the senses. 

� Decision errors represent conscious, 
goal-intended behavior that proceeds as 
designed, yet proves inadequate or 
inappropriate for that situation. 

4.0 HFACS ANALYZED & APPLIED TO 
OLNN SYSTEMS 

An analysis of the HFACS framework provides a 
sound scientific basis from which to approach the 
enhancement of other non-human components of 
complex systems that exhibit the same human-like 
behaviors (adaptive, autonomous, and non-
deterministic) that have been previously discussed.  
In this section, Tier 1 of the HFACS framework is 
examined, applied to understanding the pilot 
certification process, and ultimately is extrapolated 
to provide new insight and guidance into how the 
V&V of neural networks could be improved.    

4.1 Neural Network Violations 
Violations are determined by rules and regulations, 
which are externally imposed constraints, 
independent of what a neural network system is 
capable of learning.  For some problems, OLNN 
systems may be unencumbered by external rules 
and regulations.  An example of this situation 
would be the application of OLNN technology to 
general data mining tasks where supposedly a 
priori illegal patterns do not exist. 

In the case of the OLNN developed for the 
Intelligent Flight Control System (IFCS) project at 
ISR, external rules and regulations do exist.  Two 
major issues with respect to Neural networks are: 
(1) the representation of such regulations so that 
the NN may operate within them, and (2) under 
what circumstances could, or should, an NN 
nevertheless violate them. 

4.1.1 Neural Network Routine Violations 

Technically, an OLNN, unconstrained by rules and 
regulations, will learn to fly the aircraft in 
otherwise unsafe ways. An explanation of how this 
can occur is quite simple.  The components of most 
systems typically are over-specified, over-
designed, and over-engineered rather than merely 
being adequate to meet specifications.  Otherwise, 
systems may become unacceptably brittle at their 
specification boundaries.  Under normal 
circumstances, the actual system should be able to 
perform better than the specified system. 

An OLNN that is unconstrained in its learning to 
improve the actual system’s performance may push 
the boundaries of that system, exceeding 



capabilities of the specified system.  At some point, 
the OLNN could be flying the aircraft in a manner 
that would be in violation of the aircraft’s specified 
capabilities.  Thus, an OLNN can learn to routinely 
commit a violation. 

This introduces an interesting dichotomy regarding 
the OLNN embedded in the IFCS.  This system is 
expected to control the aircraft properly under 
normal conditions.  It also is expected to adapt and 
learn to control the aircraft’s flight under abnormal 
circumstances, even to the point of possible failure 
of various aircraft components and subsystems.  
Thus, the OLNN is learning to fly the aircraft 
routinely in an otherwise unsafe mode.  A policy 
issue is thus raised: should the OLNN be allowed 
to perform in what are otherwise considered unsafe 
circumstances? 

4.1.2 Neural Network Exceptional Violations 

Consider the situation of a human who breaks rules 
for a higher purpose.  In such a circumstance, the 
human may be operating in an abnormal situation 
that is not adequately addressed by the current 
rules.  Perhaps a rule taxonomy is required that 
differentiates what is conditionally or arbitrarily 
illegal—reflecting current technical or 
management limitations—versus what is absolutely 
illegal, reflecting violations of the laws of science.   

Sometimes, two wrongs do make a right, at least in 
that the latter somehow compensates for the former 
in a fault-tolerant, error-correcting sense.  From 
this perspective, the latter action is illegal unless it 
is the only means of correcting a prior error that 
could lead to worse consequences. 

To the extent that some abnormal situations are 
more likely to occur and are of higher risk than 
others, a priori preemptive analysis, preparation, 
training, etc. can result in that situation being 
normal.  This is an example of risk mitigation.  
Similarly, the OLNN of the intelligent flight 
control system is expected to learn to perform 
under such known-to-be unsafe conditions. 

The handling of rules and regulations by an OLNN 
might be addressed in several ways, each with its 
own issues.  They may be represented within the 
OLNN, so that the OLNN is self-regulating.  They 
may be captured internally; so that the V&V 
process must access correctness of this embedded 
rule-regulation set.  They may be applied by 
monitoring the learning and functioning of the 
OLNN, thereby enabling the anticipation of a 
violation and the determination possible recovery. 

4.2 Neural Network Errors 
In addition to violations, the HFACS framework 
identified three general types of errors, those legal 
activities that fail to achieve their intended 
outcome: (1) skill-based, (2) perceptual, and (3) 
decision.  The assessment of an NN must consider 
all three, because they are interrelated. 

4.2.1 Neural Network Skill-Based Errors 

Generally, a neural network is trained to perform 
skill-based functions that involve execution of a 
familiar procedures that normally require little or 
no conscious thought.  Some skill-based functions 
may be quite complex, involving multiple skills. 

The human becomes proficient at skill-based 
functions through repetitive practice of the skill-
based task until conscious thought is not required.  
Neural networks also require appropriate training 
and evaluation for the skill-based task to be 
performed.  Training sets must be sufficiently 
encompassing, including abnormal situations of the 
operation space where the skill is to be used. 

From the human’s perspective, skill-based errors 
generally result from a lapse in memory, such as 
forgetting, or otherwise omitting a step due to loss 
of focus or attention, or a distraction.  Similar 
conditions may exist when the neural network is 
performing skill-based tasks, but the manifestations 
and consequences are different. 

Distracting situations generally occur due to 
unexpected or unanticipated events.  Distractions 
are events that could interfere, if noticed, with 
performing the task at hand, but for which ignoring 
them poses no undesirable consequences.  Both the 
human and the neural network may be trained to 
recognize an oft-occurring distraction and so to 
dismiss it, as an unconscious skill.  The solution to 
the distraction problem for a neural network may 
seem apparent.  However, complications may arise 
that carry the risk of introducing another problem.  
There is the risk that a future occurrence is ignored 
by habit that in fact should not have been ignored. 

In the early 1980’s, a flight crew was practicing 
landing a C-5 super cargo military aircraft.  The 
crew went through all steps leading up to landing 
the aircraft, except for actually landing on the 
runway.  Before contact with the runway, the crew 
would pull up to practice another pass.14  Since 
they did not plan actually to land, they did not 
activate the landing gear; a violation that generated 
a warning alert, which became a distraction.   So, 
they disabled the alert, another violation. 



The magnitude of their cumulative failure events 
became apparent only when they finally did land 
the aircraft.  They had not re-armed the alert, as 
there was no procedure for re-arming a supposed 
always-on alert.  They also failed to activate the 
landing gear, doing just as they had practiced.  The 
consequence of this series of errors and violations 
was the crew landed the aircraft on its belly! 

With humans, one solution to unintentional 
conditioning involves bringing the otherwise 
automated event to the conscious level for 
confirmation that it indeed can be ignored.  One 
tool commonly used for this purpose is the 
checklist.  Critical steps and milestones are 
explicitly called out for conscious note. 

The general approach of explicit subtask 
decomposition, recognition, and conscious-level 
checklists presupposes that the skill-based task 
implemented by the neural network does lend itself 
to such decomposition.  The checklist manager 
must be able to recognize when the neural network 
has achieved its subtasks.  This can support the 
black-box V&V of neural networks that lack such 
internal monitoring and reporting capabilities. 

The checklist serves several purposes.  During 
training, self-feedback that the total task is being 
learned correctly is provided.  During normal 
execution of a skill-based task, the checklist 
confirms specific subtasks are addressed correctly.  
In particular, the concept of the checklist can 
support real-time V&V procedures. 

This explicit elevation of the skill-based task to the 
conscious level provides an opportunity for real-
time re-evaluation of how well a task is proceeding 
and if it should be modified, aborted, etc.  A 
recorded checklist also provides an audit trail to 
support ex post facto analysis. 

4.2.2 Neural Network Perceptual Errors 

Perceptual errors are misinterpretations of what is 
received via the senses. They generally occur when 
sensory input is degraded, or when actual input is 
correct, but is misinterpreted by the perceiver. 

As previously noted, distractions are events that 
may interfere with performing a task, but for which 
otherwise ignoring them poses no undesirable 
consequences.  For practical purposes, distractions 
may be treated as system noise.  On the other hand, 
not all confusing situations are so benign.  

In the case of the neural network, a strategy exists 
that is better than training to ignore distractions.  
The neural network may be trained not only to 
respond correctly to events involving distractions, 

but also to report, as a status output, detection of 
ignored distractions.  From a V&V perspective, 
knowledge of what is ignored can be as important 
as what it recognized.  Status recognition may be 
based on information already present in the neural 
network, or it could require additional inputs.  

Status recognition of distractions also represents 
the beginning develop of self-awareness, since the 
neural network is aware of where it is procedurally.  
This information could be useful in comparing 
what the neural network perceives itself to be 
doing with what the outside world perceives.   

Events incorrectly treated as distractions by a 
neural network could have serious consequences.  
The problem is to determine whether the event is 
indeed a distraction or a significant event. This 
leads to the discussion of confusing situations. 

A confusing situation generally is due to mixed 
signals including inconsistent inputs, conflicting 
requirements, and complex events.  Two general 
cases may be considered:  (1) misinterpretation due 
to incorrect processing of correct information, and 
(2) misinterpretation due to incorrect inputs. 

Confusion can be due to a lack of experience, 
where a system has not been exposed to the given 
confusing combination.  Neural network training 
and sets may include such confusing inputs.  In 
fact, over-training might be a consideration with 
exposure to situations beyond what is considered 
likely or even realizable in a real-life setting.  This 
represents a form of stress training and testing. 

4.2.3 Neural Network Decision Errors 

Decision errors represent conscious, goal-intended 
behavior that proceeds as designed, yet proves 
inadequate or inappropriate for that situation.  They 
tend to occur when a familiar situation is not 
recognized, is misdiagnosed, or when an unfamiliar 
situation occurs and generally result in the 
application of an unsuccessful procedure.    

The more complicated scenario involves confusing 
situations in which the total set of inputs, while 
correctly received, form an inconsistent or 
conflicting view.  The tasks may be performable if 
taken individually, and the information sources 
may be plausible if taken individually; however, 
taken together they are neither performable nor 
plausible.  The set of possible themes may be 
extendible to multiple plausible interpretations.  

Several general methods or approaches have been 
developed to attack this problem.  This scenario is 
an example of the data fusion—the seamless 
integration of data from disparate sources. On the 



other hand, identification of those sub-themes is 
the domain of methods such as data mining, which 
analyzes data for trends or anomalies without 
knowledge of the meaning of the data.  The data 
fusion process could be viewed as looking at trees 
and seeing a forest (an ecosystem); while the data 
mining process could be viewed as looking for a 
needle, the correct needle, in a haystack. 

Neural networks have been employed extensively 
for both data fusion and data mining applications. 
At issue is how to certify that neural networks have 
appropriate background knowledge.  In a neural 
network, knowledge exists in a compiled form 
embedded in its weights, links, and structure.  The 
neural network’s processing must be taken as a 
whole. It does not yield partial results or lend itself 
to any obvious explanation mechanism. 

Various efforts have been explored to capture the 
underlying knowledge in some human-readable, 
recognizable, and understandable format.  These 
efforts include methods, such as rule extraction and 
decision-tree extraction, which lend themselves to 
visualization methods that assist the human in 
identifying potential relationships between the 
nuggets of knowledge from rules and decision tree 
branches.15  This knowledge must correctly 
generalize to other situations.  Furthermore, new 
knowledge, not previously stated in human 
understandable terms, might be gleaned from such 
an effort. 

5.0 CONCLUSION 

An analysis of the pilot certification process has 
yielded new mechanisms and paradigms for the 
verification and validation of an OLNN-based 
system.  The OLNN is found to share many 
characteristics with human-in-the-loop systems.   

The historical development of artificial neural 
network systems that has depended heavily upon 
efforts to model and mimic at the biological level 
the neural systems of living things can be extended 
to incorporate higher-level psychological 
considerations of human intelligence.   

This paper has considered how an OLNN may 
manifest many human-like behaviors such as 
susceptibility to distraction, and confusion when 
there exist multiple plausible solutions.  
Fortunately, many of the mechanisms humans use 
to address such short-comings suggest analogous 
mechanisms for the design, training, operation, and 
certification of an OLNN-based system. 
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